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Information theory based on nonadditive information content
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We generalize Shannon’s information theory in a nonadditive way by focusing on the source coding theo-
rem. The nonadditive information content we adopted is consistent with the concept of the form invariance
structure of the nonextensive entropy. Some general properties of the nonadditive information entropy are
studied, in addition, the relation between the nonadditigignd the codeword length is pointed out.
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I. INTRODUCTION tween two probability distributions, is also modifi€d).
This paper explores consequences of adopting nonaddi-

The intuitive notion of what a quantitative expression for tive information content in the sense that the associated av-
information should be has been addressed in the develograge information, i.e., entropy takes a form of the modified
ment of transmission of information, which led to the infor- Tsallis entropy. The use of modified form of Tsallis’s en-
mation theory(IT). The IT today is considered to be the mosttropy is in conformity with the appropriate definitions of
fundamental field that connects other various fields such agxpectation valuéhe normalized;-expectation valugg]) of
physics(thermodynamids electrical engineeringcommuni-  the nonadditive information content. Since the information
cation theory, mathematics(probability theory and statis- theoretical entropy is defined as theerageof information
tics), computer sciencéolmogorov complexity and so on  content, it is desirable to unify the meaning of theerageas
[1]. Accordingly, the selection of the information measurethe normalizedy-expectation value throughout the nonaddi-
becomes an influential matter. The introduction of logarith-tive IT. Moreover we shall later see how Shannon’s additive
mic form of information measure dates back to Harflg};  IT is extended to the nonadditive one by addressing the
He defined the practical measure of information as the logasource coding theorem, which is one of the most fundamen-
rithm of the number of possible symbol sequences. Afteital theorems in IT.
that, Shannon established the logarithmic based IT from the The organization of this paper is as follows. In Sec. Il, we
reasonsia) practical usefulnesgp) closeness to our intui- present the mathematical preliminaries of the nonadditive en-
tive feeling, and(c) easiness of mathematical manipulation tropy and the generalized KL entropy. Section Il addresses
[3.,4]. an optimal code word within the framework of nonadditive

On the other hand, however, nonlogarithmic form(of  context. We shall attempt to give a possible meaning of non-
nonextensive entropy is currently considered as a usefuladditive indexq in terms of codeword length there. Section
measure in describing thermostatistical properties of a celV deals with the extension of Fano’s inequality, which gives
tain class of physical systems, which entail long-range interupper bound on the conditional entropy with an error prob-
actions, long-time memories, arfchulti) fractal structures. ability in a channel. We devote the last section to concluding
The form of the nonextensive entropy proposed by Tsalligemarks.
[5] has been intensively applied to many such systgshs
The reason why the formalism violating the extensivity of || NONADDITIVE ENTROPY AND THE GENERALIZED
the statistical-mechanical entropy seems to be essential for KL ENTROPY
convincing description of these systems is not sufficiently
revealed in the present status. Nevertheless the successful A. Properties of nonadditive entropy of information
application to some physical systems seems to lead us to For a discrete set of states with probability mass function
investigate into the pOSSlblllty of the nonadditive IT since p(X), wherex be|ongs to a|phabé{—(’ we consider the fol-
Shannon’s information entropy has the same form as thgywing nonadditive information conter(p),
logarithmic statistical-mechanical entropy.

It is desirable to employ the nonadditive information con- l4(p)=—Ingp(x), (D)
tent that the associated IT contains Shannon’s IT in a special
case. The concept of the form invariance to the structure ofvhere In x is a g-logarithm function defined as Jrx
nonextensive entropies was considered to provide a guiding:(x'~9—1)/(1—q). In the limitq—1, Ing X recovers the stan-
principle for a clear basis for generalizations of logarithmicdard logarithm Irx. In Shannon’s additive IT, an information
entropy[7]. This structure seems to give a hint at the seleccontent is expressed as Inp(x) in NAT unit, which is
tion of the nonadditive information content. The form invari- monotonically decreasing function with respecpt{x). This
ant structure requires normalization of the original Tsallisbehavior matches our intuition in that we get more informa-
entropy by=;p{, wherep; is a probability of eventandqis  tion in the case the least-probable event occurs and less in-
a real number residing in the interval (0,1) from the preserformation in the case the event with high probability occurs.
vation of concavity of the entropy. In addition, the Kullback- It is worth noting that this property is qualitatively valid for
Leibler (KL) relative entropy, which measures distance be-nonadditive information content for ajj except the fact that
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there exists upper limit 1/(2q) at p(x)=0. Therefore the
Shannon reaso(b) we referred to in Sec. | is considered to
be no crucial element for determining the logarithmic form.
Moreover, it is easy to see that the Renyi information of H,(X,Y)=Hq(X)+Hg(Y[X)+(g—1)H(X)H(Y[X).
orderq[9], H,?: In=, .4 p4x)/(1—q), which is an additive (
information measure, can be written with this nonadditive

respectively. Then we have the following theorem.
Theorem 1: The joint entropy satisfies

information content as

In EH {1-(1—q)l[p(x)]}¥E~9

R_
Hq= 1-q : 2

The entropyH,(X) of a discrete random variabl¥ is

Proof: From Eq.(7) we can rewriteHy(X,Y) with the
relation p(x,y) =p(x)p(y|x) as

1 1
Ha(X.Y) = o= -1(. (9

> pix) X piylx)
xeH ye)y

defined as an average of the information content, where the

averagemeans the normalizegrexpectation valugs],

-2 PAX)Ingp(x)  1—- X pd(x)
XeH _ XeH

Hq(X)= )

> pi(x) (q—1) >, p(x)
XeH XeH

where we have used the normalization of probability
Zen P(X)=1. In a similar way, we define the nonadditive
conditional information content and the joint one as follows:

_prAy -1
oy =—""7— 4
pa(xy)—1
lq(X,y)= B 6)

wherey belongs to a different alphabét. Corresponding

entropy conditioned by and the joint entropy oKX and Y
becomes

> Py 4(y[x)
ye)y
Ho(Y]X) =

> pyx)
ye)y

1- 2, pY(y|x)
ye)y

= (6)
(q—1) >, pi(ylx)
ye)y

and

> pAxY)Ig(x,Y)

xeH,ye

> pix,y)

xeH,ye)y
1—X€H2y€y pd(x,y)
= ' , (7)
(a-1) > pixy)
XeH y

Ye

Hq(X,Y)=

Since Eq. (6)
—1)Hq(Y[X)]17%, we get

gives  =,.,p%y[x)=[1+(q

1 1
Ho(XY)= =5 -1].

XEH pIC)/[L+(q—1)Hg(Y]X)]

(10

Here, we introduce the following definitidri O]

1 x) 1
<1+(q—1)Hq(Y|x)>q “Tr(@-DH

where the bracket denotes the normalizge@xpectation
value with respect t@(x). Then we have from Eq10),

1+(g-DHg(YX)

> pi(x)
xeH

Hq(X,Y)= 1. (12

qg-1

Putting =, . p9(X) =[ 1+ (q—1)H4(X)] ! into this yields
the theorent]

This theorem has a remarkable similarity to the relation
with which the Jackson basic number ordeformation
theory satisfies, which was pointed out in Rf]. That is,
[X]qE(qX—l)/(q—l) is the Jackson basic number of a
quantity X. Then, for the sum of two quantitieéandY, the
associated basic numbeX+Y], is shown to becomgX],
+[Y]g+(q—=1)[X]4[Y]q. Obviously this theorem recovers
the ordinary relatiorH(X,Y)=H(X)+H(Y|X) in the limit
g—1. In this modified Tsallis formalismg appears ag
—1 instead of as £ q [11,12. WhenX andY are indepen-
dent events from each other, E®) gives the pseudoaddi-
tivity relation [8]. However, it is converse to the case of the
original Tsallis one in thatj>1 yields superadditivity and
g<1 subadditivity. It is worth mentioning that the concept
of nonextensive conditional entropy in the framework of the
original Tsallis entropy was first introduced for discussing
guantum entanglement in Rg¢fl1]. From this theorem, we
immediately have the following corollary concerning the
equivocation.

Corollary:
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Hq(Y[X)=

Ho(Y,ZX) = Hq(Z]Y,X) +(q— L){Ha(X)Hq(Y,Z|X) = Ho(X,Y)Hq(Z] Y, X)}

PHYSICAL REVIEW E 63 046105

Proof: In Eq.(8), when we se¢& asY,Z, we have
Hq(X,Y,Z)=Hqy(X)+Hq(Y,Z|X)
+(g=DHg(X)Hq(Y,Z[X), (14

on the other hand, when we regatcasY,X andY asZ, we
get

Hq(X,Y,Z)=Hq(X,Y)+H(Y,Z|X)

+(q—DH4(X,Y)H(Z]Y,X). (15

13
1+(q-DHg(X) 13
|
Remark: In the additive limit, we getH(X;,
Xoy oo X)) =2 H(Xi| X1, - .., X1) which states that

the entropy ofn variables is constituted by the sum of the
conditional entropiegchain rule.

From this relation Eq(16), we need all joint entropy be-
low the level ofn random variables to acquire the joint en-
tropy Hy(Xq, ... .X,); this situation is similar to the
Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy in the
N-body distribution function. Let us next define the mutual
informationZ,(Y;X), which quantifies the amount of infor-
mation that can be gained from one evehabout another

Subtracting both sides of the above two equations and afventy,

ranging with respect tél ,(Y|X) with Eq. (8), we obtain the
corollary.

Remarks: In the additive limig(— 1), we recover the re-

lation H(Y|X)=H(Y,Z|X)—H(Z|Y,X).

Moreover, with the help of Eq.13), we have the follow-
ing theorem.

Theorem 2: Hierarchical structure of entropl,—The

joint entropy ofn random variableX,,X,, ... X, satisfies
Hg(X1.Xz, ... . Xp)
n
:;1 [1+(q—DHg(Xi—1, ... X9)]
XHq(Xilxi—la ---,Xl). (16)

Proof: From Eq. (8), Hy(X1,X3)=Hq(X1)+[1+(q
—1)Hy(X1)THq(Xo[X1) holds. Next, from Eq.(14), we
have

Hq(X1,X52,X3) =Hq(Xq) +Hq(Xz,X3]Xy1)
+(g— 1) Hg(X)Hq(X2,X5/Xq).
(17
SinceH (X, X3/ X;) is written using Eq(13) as
Hq(X2,X3|X1) =Hg(X5|X7)

1+(g—1)Hy(X1,X5)
1+(g—1)Hq(Xy)

Hq(X3]X2,Xy),
(18)

Eqg. (17) can be rewritten as

Hq(X1, X, Xa) = Hq(X0) + [ 1+ (4= 1)Hg(Xp) Hqg(Xo| Xy)

+[1+(a— 1) Hq(X1,X) THg(X5 X2, X1).
(19

Similarly, repeating application of the corollary gives the X;_4, ..

theorem.[

Zy(Y;X)
EHq(Y)_ Hq(Y|X)

_ Ha(X)+Hg(Y) —Hg(X,Y) +(q— 1)Hg(X)Hg(Y)
1+(g—1)Hq(X) '

(20

ThereforeZ,(Y;X) expresses the reduction in the uncertainty
of Y due to the acquisition of knowledge & Here we
postulate that the mutual information in nonadditive case is
non-negative. The non-negativity may be considered to be a
requirement rather than the one to be proved in order to be
consistent with the usual additive mutual information.
Z,4(Y;X) also converges to the usual mutual information
Z(Y;X)=H(Y) = H(Y|X) =H(X) + H(Y) —H(X,Y) in the
additive cased—1). We note that the mutual information
of a random variable with itself is the entropy itself
Z4(X;X) =Hy(X). WhenX andY are independent variables,
we haveZy(Y;X)=0 [13]. Then, we have the following
theorem.

Theorem 3: Independence bound on entréRy

Hq(X1, Xz, - -+ Xp)

sgl[lﬂq—l)Hq(xifl,...,x1>]Hq<xi> (21)

with equality if and only if eacl¥; is independent.
Proof. From the assumption &f,(X;Y)=0 introduced
above, we have

n

igl Hq(xi|xi_1, C ,Xl)ﬁizzl Hq(x|) (22)

with equality, if and only if, eachX; is independent of
., X1. Then the theorem holds from the previous
theorem Eq(16). (I
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B. The generalized KL entropy source letters generated from an information source to the

The KL entropy or the relative entropy is a measure of theS€duénce of binary codewords as an example. If a code is
distance between two probability distributiops(x) and ~ llocated —for four source lettersX;,X;, X3, X, as

p/(x). Here, we define it as the normalizegexpectation ~0:10.110,111, respectively, the source sequeioé,XsX;

value of the change of the nonadditive information contenf'S coded.into 1011111010. On the other hand, if another
Al=1[p' () ]—1[p(x)] [14] code assigns them as 0,1,00,11, then the codeword becomes
4 d ’ 111001. The difference between the two codes is striking in

the coding. In the former codeword, the first two letters 10

X;{ pI(x) Al corresponds tX, and not the beginning of any other code-
Dq[p(x)”p’(x)]z - word, then we can observé,. Next there are no codewords
E pd(x) corresponding to 1 and 11 but 111 is, and is decoded into
XeM X4. Then the next 110 is decoded intg, leaving 10, which
is decoded intoX,. Therefore we can uniquely decode the
E pIX)[INg P(X) —Ing p’ ()] codeword. In the latter case, however, we have possibilities
XeH to interpret the first three letters 1114sX,X,, X,X,, Or as

X4X,. Namely, this code cannot be uniquely decoded into
2 p9(x) the source letter that gave rise to it. Accordingly, we need to
xeH . . .
deal with so-called therefix codeor theinstantaneous code
(23)  such as the former case. The prefix code is a code that no
codeword is a prefix of any other codewdpiefix condition

We note that the above generalized KL entropy satisfies thgodg [1,18). We recall that any code that satisfies the prefix
form invariant structure, which has been introduced in Refcongition over the alphabet siZ2(D=2 is a binary case

[7,15]. We review the positivity of the generalized KL en- myst satisfy the Kraft inequalithd, 18],
tropy in the case of>0, which can be considered to be a

necessary property to develop the IT. M
Theorem 4: Information inequality—Fa>0, we have > pli<1, (27)
i
Dy(p(X)[p"(x))=0 (29)

wherel; is a code length ofth codeword (=1,...M).
A\/Ioreover if a code is uniquely decodable, the Kraft inequal-
ity holds for it [1,18]. We usually hope to encode the se-

with equality, if and only if,p(x)=p’(x) for all xe H.
Proof: The outline of the proof is the same as the one i
Refs. [16,17] except for the factoX, 4p9(x). From the

M quence of source letters to the sequence of codewords as
definition Eq.(23), short as possible, that is, our problem is finding a prefix
D[ P[P’ (X)] condition code with the minimum average length of a set of

codewordql;}. The optimal code is given by minimizing the

1 following functional constrained by the Kraft inequality,
“1.g XEH p(x)

Z pi'l;
: 2. pf

’ 1-q
x{l—(p (X)) ] S, i) (25)

p(x) J +A

> D—'i), (28)

1 p'(x)|*
> — - q
’1—q{1 (gﬁp(x) p(x)) ] 2, P | . »
wherep; is the probability of realization of the word length
=0, (26 and\ is a Lagrange multiplier. We have assumed equality in
the Kraft inequality and have neglected the integer constraint
where Jensen’s inequality for the convex function has beegp, |, . Differentiating with respect to; and setting the de-
usedZ,p(x)f(x)=f[Z,p(x)x] with f(x)=—Iny(x), f"(X)  rivative to 0, yields
>0. We have equality in the second line, if and only if,
p'(x)/p(x)=1 for all x, accordinglyD4[p(x)|p’(x)]=0. q
- plo— P (29

> p'|\logD
[ll. SOURCE CODING THEOREM i
Having presented some properties of the nonadditive en- o , ) ,
tropy and the generalized KL entropy as a preliminary, we1€re, it is worth noting that from the Kraft lr11equal|ty the
are now in a status to address our main results that@grange multipliers is related ask?(logD)* - Further-
Shannon’'s source coding theorem can be extended to thwore when the equality holds, the fractin i, which is
nonadditive case. Let us consider encoding the sequence given by the optimal codeword lengtfi, is expressed as
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o pi! ~[logp(Zip) — ¢ logp pi] —(logp (3iph —a logp pj)
|i _ D D(<iPj D Pil< D D{<iPj D Pi
D . @ 2 2
2 p .
=> - =1 (34)
I
Thereforel* can be written as log=ip)—qlogp p; and in E pi

the additive limit, we obtain=—logp p;. However, we

cannot always determine the optimal codeword length likqyencer) 1 satisfies the Kraft inequality. Moreover, we have
this since the;'s must be integers. We have the following ¢ following theorem.

theorem. Theorem 6: The average codeword length assignelj by
Theorem 5: The average codeword length, of any = [logo(2,p9) —qlogp pi] satisfies

prefix code for a random variabl satisfies

Hq(p)+Dg(plr)<(L)q<Hq(p)+Dq(pllr)+1. (35
(L)g=Hq(X) (3D
Proof: The integer codeword length satisfies

with equality, if and only if,p;=[1—(1—q)l;]¥*"9.

Prqof:_ Frqm Eq(23 the ge_neralized KL entropy between |OQD( z pﬂ) —qlogp pig|i<|ogD< 2 p!| —qlogop;+ 1.
two distributionsp andr is written as [ [
(36)
S pdingpi— Ingry)  1-> pdri=d Multiplying by pf/=;pf and summing over with Eq. (33)
o e e SR yields the theorenm]
Dq(plr)= = This means that the distribution, different from the opti-
> pf (1-q) > p! mal one, provokes a correction &f,(p[r) in the average
I I

codeword length as it does in the case of additive one.
We have discussed the properties of the nonadditive en-
1- E p{ E D?(ril_q— 1) tropy in the case of one letter so far. Next, let us consider the
= ' _ (32)  Situation when we transmit a sequencendetters from the
(1-q) po (1-q) p? source in such a way that each letter is to be generated inde-
T ~ pendently as identically distributed random variables accord-
ing to p(x). Then the average codeword length per letter

_ _ . . AL g=({ (X1, ... .Xp))q/n is bounded as we derived in the
If we take the information content associated with pmbab"'preceding theorem,

ity r as theith codeword length;, i.e., —(ri 9—1)/(1
—q)=I;, then the average codeword length can be writteny, (X o X =(1(Xy X)be<Hq(X, X )41,
from Eq (32) as q ! ¥ n ! “InJ/q q 1 \n (37)

(L)q=Hg(X)+Dq(p|lr). (33 Since we are now considering independently, identically dis-
a g tributed random variableX,, ... X, we obtain

SinceDgy(p[r)=0 for g>0 from Theorem 4, we have the n

theorem. The equality holds if and only f;=r;. [J E [1+(d—DHg(Xi—1, .. . X)) Hg(X))
We note that the relatior (r! " 9—1)/(1—q)=I; means -1
that the codeword length equals the information content n
different fromp, I;=14(r). When the equality is realized in n
the above theorem, we can derive an interesting interpreta- T (g— ' _
tion on the nonadditivity parameteg The condition of the 2'1 [1+(@=D)Hg(Xi—1, ... X)) THg(X))

|
equality states that the probability is expressed as the Tsallis <(Lp)g<

n
canonical ensemblelike factor in a@rwise manner. Then
eachl; has the limit in length corresponding tpsuch as 1

Since log,(ZipM—qlogp p; obtained by the optimization
problem is not always equal to an integer, we impose thgyhere we have used Theorem 3. This relation can be consid-
integer condition on the codewordls} by rounding it up as  ered to be the generalized source coding theorem for the
li=[logp(Zip) —qlogp pil, where[x] denotes the smallest in- finite number of letters. We note that we obtai(X)
teger =x [1]. Moreover the relatiorflogy(Zip)—qlogp pi] <(L)<H(X)+1/n in the additive limit since
=logp(Zip)—qlogp p; leads to H(Xq, ... . X,)=2ZH(X;)=nH(X) holds.
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IV. GENERALIZED FANO'S INEQUALITY and from the relationH,(E)=H4(P.), we can evaluate
Hq(ElY) as Hy(E|Y)<Hy(E)=Hy(Pe). Moreover,

Fano’s inequality is an essential ingredient to prove th +(XIE.Y) can be written as

converse to the channel coding theorem, which states that t
probability of error that arises over a channel is bounded
away from zero when the transmission rate exceeds the chan-

nel capacity[19]. In the estimation of an original message E (pr{E})qu()qY,E)
generated from the information source, the original variablg_| E

X may be estimated a§’ on the side of a destination. There- q(XI E.Y)= a
fore, we introduce the probability of err@?,=Pr{X' X} EE: (PH{E})
due to the noise of the channel through which the signal is
transmitted. With an error random varialitedefined as (1=P) H(X|Y,0) +PIH(X]Y,1) .
PI+(1—Pg)d '
1 ifX'#X
E= 0 ifX'=X, (39 For E=0, g(Y) givesX resulting inH4(X|Y,0)=0 and for

E=1, we have upper bound qu(X|Y,1) by the maximum

we have the following theorem, which is considered to be theentropy comprised of the remaining outconj4—1,

generalizednonadditive versionFano’s inequality.
Theorem 7: The generalized Fano’s inequality

H(X]y 1< (=D »
T (=g (H -t
Ho(X|Y)<Hq(Po) + 1+(g—1)Hy(E,Y)
q T 14+ (g DHG(Y) Then it follows from Eq.(43) that
it 1-(|H|-1)*d
XPq+(1—P )q (q_l)(|H|_l)l,q! (40) 1_(|H|_1)17q
e [PE+(1=Po)UHy(XIE,Y) <P (45)

_ _ _ S(1-a)(H -1t
where|H| denotes the size of the alphabet of the information
source.

Proof: The proof can be done along the line of the usua
Shannon’s additive cade.g., Ref.[1]). Using the corollary
Eq. (13), we have two different expressions ﬂdﬁ(E,XlY),

ombining the above results with E42), we have the
heorem.[]
Remark: In the additive limit, we obtain the usual Fano's
inequality H(X|Y)<H(Pg) + PcIn(|H|—1) in NAT unit.

1+(g—L)H(X,Y)
1+(g—=1)Hq(Y)

Hq(E.X[Y)=Hy(X]Y)+ Hq(E[X,Y) V. CONCLUDING REMARKS

(41) We have attempted to extend Shannon’s additive IT to the
nonadditive case by using the nonadditive information con-
tent Eq.(1). In developing the nonadditive IT, this postulate
of the nonadditive information content seems to plausible
selection in terms of the unification of the meaningawer-
agethroughout the entire theory. As a consequence, the in-

Hq(X|E,Y), formation entropy becomes the modified type of Tsallis's
1+(a=1)Hq(Y) nonextensive entropy. We have shown that the properties of
(42 the nonadditive information entropy, conditional entropy,
and the joint entropy in the form of theorem, which are nec-
where we have used the corollary by regarditig{E,X|Y)  essary elements to develop IT. These results recover the
as Hy(X,E[Y) in the second expression E@#2). We are  usual Shannon ones in the additive limit-¢1). Moreover,
now considering the following situation. That is, we wish to the source coding theorem can be generalized to the nonad-
know the genuineX; however, we only observe a random ditive case. As we have seen in Theorem 5, the nonadditivity
variableY, which can be related to th¢ by the nonadditive  of the information content can be regarded as it determines
conditional information conterf,(y|x). Hence we calculate the longest codeword we can transmit to the channel. The
X', an estimate oK, as a function ofY such asg(Y) [1].  philosophy of the present attempt can be positioned as a
Then we see-lq(Elx,Y) becomes 0 sincE is a function of  reverse of Jaynes’s pioneering wofR0,21]. Jaynes has
XandY by the definition Eq(39). Therefore the first expres- brought a concept of IT to statistical mechanics in the form
sion of Hy(E,X|Y) reduces tdH,(X|Y). On the other hand, of maximizing entropy of a systerfJaynes’s maximum en-
from the non-negativity property of(E;Y) we assumed, tropy principle. The information theoretical approach to sta-

and

1+(g—1)H4(EY)

Hq(E,X|Y)=H4(E|Y)+
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