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Information theory based on nonadditive information content
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We generalize Shannon’s information theory in a nonadditive way by focusing on the source coding theo-
rem. The nonadditive information content we adopted is consistent with the concept of the form invariance
structure of the nonextensive entropy. Some general properties of the nonadditive information entropy are
studied, in addition, the relation between the nonadditivityq and the codeword length is pointed out.
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I. INTRODUCTION

The intuitive notion of what a quantitative expression f
information should be has been addressed in the deve
ment of transmission of information, which led to the info
mation theory~IT!. The IT today is considered to be the mo
fundamental field that connects other various fields such
physics~thermodynamics!, electrical engineering~communi-
cation theory!, mathematics~probability theory and statis
tics!, computer science~Kolmogorov complexity! and so on
@1#. Accordingly, the selection of the information measu
becomes an influential matter. The introduction of logari
mic form of information measure dates back to Hartley@2#.
He defined the practical measure of information as the lo
rithm of the number of possible symbol sequences. A
that, Shannon established the logarithmic based IT from
reasons:~a! practical usefulness,~b! closeness to our intui
tive feeling, and~c! easiness of mathematical manipulati
@3,4#.

On the other hand, however, nonlogarithmic form of~or
nonextensive! entropy is currently considered as a use
measure in describing thermostatistical properties of a
tain class of physical systems, which entail long-range in
actions, long-time memories, and~multi! fractal structures.
The form of the nonextensive entropy proposed by Tsa
@5# has been intensively applied to many such systems@6#.
The reason why the formalism violating the extensivity
the statistical-mechanical entropy seems to be essentia
convincing description of these systems is not sufficien
revealed in the present status. Nevertheless the succe
application to some physical systems seems to lead u
investigate into the possibility of the nonadditive IT sin
Shannon’s information entropy has the same form as
logarithmic statistical-mechanical entropy.

It is desirable to employ the nonadditive information co
tent that the associated IT contains Shannon’s IT in a spe
case. The concept of the form invariance to the structure
nonextensive entropies was considered to provide a gui
principle for a clear basis for generalizations of logarithm
entropy@7#. This structure seems to give a hint at the sel
tion of the nonadditive information content. The form inva
ant structure requires normalization of the original Tsa
entropy by( i pi

q , wherepi is a probability of eventi andq is
a real number residing in the interval (0,1) from the pres
vation of concavity of the entropy. In addition, the Kullbac
Leibler ~KL ! relative entropy, which measures distance b
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tween two probability distributions, is also modified@7#.
This paper explores consequences of adopting nona

tive information content in the sense that the associated
erage information, i.e., entropy takes a form of the modifi
Tsallis entropy. The use of modified form of Tsallis’s e
tropy is in conformity with the appropriate definitions o
expectation value~the normalizedq-expectation value@8#! of
the nonadditive information content. Since the informati
theoretical entropy is defined as theaverageof information
content, it is desirable to unify the meaning of theaverageas
the normalizedq-expectation value throughout the nonadd
tive IT. Moreover we shall later see how Shannon’s addit
IT is extended to the nonadditive one by addressing
source coding theorem, which is one of the most fundam
tal theorems in IT.

The organization of this paper is as follows. In Sec. II, w
present the mathematical preliminaries of the nonadditive
tropy and the generalized KL entropy. Section III addres
an optimal code word within the framework of nonadditiv
context. We shall attempt to give a possible meaning of n
additive indexq in terms of codeword length there. Sectio
IV deals with the extension of Fano’s inequality, which giv
upper bound on the conditional entropy with an error pro
ability in a channel. We devote the last section to conclud
remarks.

II. NONADDITIVE ENTROPY AND THE GENERALIZED
KL ENTROPY

A. Properties of nonadditive entropy of information

For a discrete set of states with probability mass funct
p(x), wherex belongs to alphabetH, we consider the fol-
lowing nonadditive information contentI q(p),

I q~p![2 lnq p~x!, ~1!

where lnq x is a q-logarithm function defined as lnq x
5(x12q21)/(12q). In the limit q→1, lnq x recovers the stan
dard logarithm lnx. In Shannon’s additive IT, an informatio
content is expressed as2 ln p(x) in NAT unit, which is
monotonically decreasing function with respect top(x). This
behavior matches our intuition in that we get more inform
tion in the case the least-probable event occurs and les
formation in the case the event with high probability occu
It is worth noting that this property is qualitatively valid fo
nonadditive information content for allq except the fact that
©2001 The American Physical Society05-1
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TAKUYA YAMANO PHYSICAL REVIEW E 63 046105
there exists upper limit 1/(12q) at p(x)50. Therefore the
Shannon reason~b! we referred to in Sec. I is considered
be no crucial element for determining the logarithmic for
Moreover, it is easy to see that the Renyi information
orderq @9#, Hq

R5 ln (xPH pq(x)/(12q), which is an additive
information measure, can be written with this nonaddit
information content as

Hq
R5

ln (
xPH

$12~12q!I q@p~x!#%q/(12q)

12q
. ~2!

The entropyHq(X) of a discrete random variableX is
defined as an average of the information content, where
averagemeans the normalizedq-expectation value@8#,

Hq~X!5

2 (
xPH

pq~x!lnq p~x!

(
xPH

pq~x!

5

12 (
xPH

pq~x!

~q21! (
xPH

pq~x!

, ~3!

where we have used the normalization of probabi
(xPH p(x)51. In a similar way, we define the nonadditiv
conditional information content and the joint one as follow

I q~yux!5
p12q~yux!21

q21
, ~4!

I q~x,y!5
p12q~x,y!21

q21
, ~5!

where y belongs to a different alphabetY. Corresponding
entropy conditioned byx and the joint entropy ofX and Y
becomes

Hq~Yux!5

(
yPY

pq~yux!I q~yux!

(
yPY

pq~yux!

5

12 (
yPY

pq~yux!

~q21! (
yPY

pq~yux!

~6!

and

Hq~X,Y!5

(
xPH,yPY

pq~x,y!I q~x,y!

(
xPH,yPY

pq~x,y!

5

12 (
xPH,yPY

pq~x,y!

~q21! (
xPH,yPY

pq~x,y!

, ~7!
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respectively. Then we have the following theorem.
Theorem 1: The joint entropy satisfies

Hq~X,Y!5Hq~X!1Hq~YuX!1~q21!Hq~X!Hq~YuX!.
~8!

Proof: From Eq.~7! we can rewriteHq(X,Y) with the
relationp(x,y)5p(x)p(yux) as

Hq~X,Y!5
1

q21 F 1

(
xPH

pq~x! (
yPY

pq~yux!

21G . ~9!

Since Eq. ~6! gives (yPYpq(yux)5@11(q
21)Hq(Yux)#21, we get

Hq~X,Y!5
1

q21 F 1

(
xPH

pq~x!/@11~q21!Hq~Yux!#

21G .

~10!

Here, we introduce the following definition@10#

K 1

11~q21!Hq~Yux!L
q

(X)

[
1

11~q21!Hq~YuX!
, ~11!

where the bracket denotes the normalizedq-expectation
value with respect top(x). Then we have from Eq.~10!,

Hq~X,Y!5
1

q21 F 11~q21!Hq~YuX!

(
xPH

pq~x!

21G . ~12!

Putting (xPH pq(x)5@11(q21)Hq(X)#21 into this yields
the theorem.h

This theorem has a remarkable similarity to the relat
with which the Jackson basic number inq-deformation
theory satisfies, which was pointed out in Ref.@7#. That is,
@X#q[(qX21)/(q21) is the Jackson basic number of
quantityX. Then, for the sum of two quantitiesX andY, the
associated basic number@X1Y#q is shown to become@X#q
1@Y#q1(q21)@X#q@Y#q . Obviously this theorem recover
the ordinary relationH(X,Y)5H(X)1H(YuX) in the limit
q→1. In this modified Tsallis formalism,q appears asq
21 instead of as 12q @11,12#. WhenX andY are indepen-
dent events from each other, Eq.~8! gives the pseudoaddi
tivity relation @8#. However, it is converse to the case of th
original Tsallis one in thatq.1 yields superadditivity and
q,1 subadditivity. It is worth mentioning that the conce
of nonextensive conditional entropy in the framework of t
original Tsallis entropy was first introduced for discussi
quantum entanglement in Ref.@11#. From this theorem, we
immediately have the following corollary concerning th
equivocation.

Corollary:
5-2
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Hq~YuX!5
Hq~Y,ZuX!2Hq~ZuY,X!1~q21!$Hq~X!Hq~Y,ZuX!2Hq~X,Y!Hq~ZuY,X!%

11~q21!Hq~X!
~13!
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Proof: In Eq.~8!, when we seeY asY,Z, we have

Hq~X,Y,Z!5Hq~X!1Hq~Y,ZuX!

1~q21!Hq~X!Hq~Y,ZuX!, ~14!

on the other hand, when we regardX asY,X andY asZ, we
get

Hq~X,Y,Z!5Hq~X,Y!1Hq~Y,ZuX!

1~q21!Hq~X,Y!Hq~ZuY,X!. ~15!

Subtracting both sides of the above two equations and
ranging with respect toHq(YuX) with Eq. ~8!, we obtain the
corollary. h

Remarks: In the additive limit(q→1), we recover the re-
lation H(YuX)5H(Y,ZuX)2H(ZuY,X).

Moreover, with the help of Eq.~13!, we have the follow-
ing theorem.

Theorem 2: Hierarchical structure of entropyHq—The
joint entropy ofn random variablesX1 ,X2 , . . . ,Xn satisfies

Hq~X1 ,X2 , . . . ,Xn!

5(
i 51

n

@11~q21!Hq~Xi 21 , . . . ,X1!#

3Hq~Xi uXi 21 , . . . ,X1!. ~16!

Proof: From Eq. ~8!, Hq(X1 ,X2)5Hq(X1)1@11(q
21)Hq(X1)#Hq(X2uX1) holds. Next, from Eq.~14!, we
have

Hq~X1 ,X2 ,X3!5Hq~X1!1Hq~X2 ,X3uX1!

1~q21!Hq~X1!Hq~X2 ,X3uX1!.

~17!

SinceHq(X2 ,X3uX1) is written using Eq.~13! as

Hq~X2 ,X3uX1!5Hq~X2uX1!

1
11~q21!Hq~X1 ,X2!

11~q21!Hq~X1!
Hq~X3uX2 ,X1!,

~18!

Eq. ~17! can be rewritten as

Hq~X1 ,X2 ,X3!5Hq~X1!1@11~q21!Hq~X1!#Hq~X2uX1!

1@11~q21!Hq~X1 ,X2!#Hq~X3uX2 ,X1!.

~19!

Similarly, repeating application of the corollary gives th
theorem.h
04610
r-

Remark: In the additive limit, we getH(X1 ,
X2 , . . . ,Xn)5( i 51

n H(Xi uXi 21 , . . . ,X1) which states that
the entropy ofn variables is constituted by the sum of th
conditional entropies~chain rule!.

From this relation Eq.~16!, we need all joint entropy be
low the level ofn random variables to acquire the joint e
tropy Hq(X1 , . . . ,Xn); this situation is similar to the
Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy in th
N-body distribution function. Let us next define the mutu
informationIq(Y;X), which quantifies the amount of infor
mation that can be gained from one eventX about another
eventY,

Iq~Y;X!

[Hq~Y!2Hq~YuX!

5
Hq~X!1Hq~Y!2Hq~X,Y!1~q21!Hq~X!Hq~Y!

11~q21!Hq~X!
.

~20!

ThereforeIq(Y;X) expresses the reduction in the uncertain
of Y due to the acquisition of knowledge ofX. Here we
postulate that the mutual information in nonadditive case
non-negative. The non-negativity may be considered to b
requirement rather than the one to be proved in order to
consistent with the usual additive mutual informatio
Iq(Y;X) also converges to the usual mutual informati
I(Y;X)5H(Y)2H(YuX)5H(X)1H(Y)2H(X,Y) in the
additive case (q→1). We note that the mutual informatio
of a random variable with itself is the entropy itse
Iq(X;X)5Hq(X). WhenX andY are independent variables
we haveIq(Y;X)50 @13#. Then, we have the following
theorem.

Theorem 3: Independence bound on entropyHq

Hq~X1 ,X2 , . . . ,Xn!

<(
i 51

n

@11~q21!Hq~Xi 21 , . . . ,X1!#Hq~Xi ! ~21!

with equality if and only if eachXi is independent.
Proof: From the assumption ofIq(X;Y)>0 introduced

above, we have

(
i 51

n

Hq~Xi uXi 21 , . . . ,X1!<(
i 51

n

Hq~Xi ! ~22!

with equality, if and only if, eachXi is independent of
Xi 21 , . . . ,X1. Then the theorem holds from the previou
theorem Eq.~16!. h
5-3
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B. The generalized KL entropy

The KL entropy or the relative entropy is a measure of
distance between two probability distributionspi(x) and
pi8(x). Here, we define it as the normalizedq-expectation
value of the change of the nonadditive information cont
DI q[I q@p8(x)#2I q@p(x)# @14#,

Dq@p~x!ip8~x!#[

(
xPH

pq~x!DI q

(
xPH

pq~x!

5

(
xPH

pq~x!@ lnq p~x!2 lnq p8~x!#

(
xPH

pq~x!

.

~23!

We note that the above generalized KL entropy satisfies
form invariant structure, which has been introduced in R
@7,15#. We review the positivity of the generalized KL en
tropy in the case ofq.0, which can be considered to be
necessary property to develop the IT.

Theorem 4: Information inequality—Forq.0, we have

Dq~p~x!ip8~x!!>0 ~24!

with equality, if and only if,p(x)5p8(x) for all xPH.
Proof: The outline of the proof is the same as the one

Refs. @16,17# except for the factor(xPHpq(x). From the
definition Eq.~23!,

Dq@p~x!ip8~x!#

5
1

12q (
xPH

p~x!

3H 12S p8~x!

p~x! D 12qJ Y (
xPH

pq~x! ~25!

>
1

12q H 12S (
xPH

p~x!
p8~x!

p~x! D 12qJ Y (
xPH

pq~x!

50, ~26!

where Jensen’s inequality for the convex function has b
used(xp(x) f (x)> f @(xp(x)x# with f (x)52 lnq(x), f 9(x)
.0. We have equality in the second line, if and only
p8(x)/p(x)51 for all x, accordinglyDq@p(x)ip8(x)#50.
h

III. SOURCE CODING THEOREM

Having presented some properties of the nonadditive
tropy and the generalized KL entropy as a preliminary,
are now in a status to address our main results
Shannon’s source coding theorem can be extended to
nonadditive case. Let us consider encoding the sequenc
04610
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source letters generated from an information source to
sequence of binary codewords as an example. If a cod
allocated for four source lettersX1 ,X2 ,X3 ,X4 as
0,10,110,111, respectively, the source sequenceX2X4X3X2
is coded into 1011111010. On the other hand, if anot
code assigns them as 0,1,00,11, then the codeword bec
111001. The difference between the two codes is striking
the coding. In the former codeword, the first two letters
corresponds toX2 and not the beginning of any other cod
word, then we can observeX2. Next there are no codeword
corresponding to 1 and 11 but 111 is, and is decoded
X4. Then the next 110 is decoded intoX3, leaving 10, which
is decoded intoX2. Therefore we can uniquely decode th
codeword. In the latter case, however, we have possibili
to interpret the first three letters 111 asX2X2X2 , X2X4, or as
X4X2. Namely, this code cannot be uniquely decoded i
the source letter that gave rise to it. Accordingly, we need
deal with so-called theprefix codeor the instantaneous code
such as the former case. The prefix code is a code tha
codeword is a prefix of any other codeword~prefix condition
code! @1,18#. We recall that any code that satisfies the pre
condition over the alphabet sizeD(D52 is a binary case!
must satisfy the Kraft inequality@1,18#,

(
i

M

D2 l i<1, ~27!

where l i is a code length ofi th codeword (i 51, . . .M ).
Moreover if a code is uniquely decodable, the Kraft inequ
ity holds for it @1,18#. We usually hope to encode the s
quence of source letters to the sequence of codeword
short as possible, that is, our problem is finding a pre
condition code with the minimum average length of a set
codewords$ l i%. The optimal code is given by minimizing th
following functional constrained by the Kraft inequality,

J5

(
i

pi
ql i

(
i

pi
q

1lS (
i

D2 l i D , ~28!

wherepi is the probability of realization of the word lengthl i
andl is a Lagrange multiplier. We have assumed equality
the Kraft inequality and have neglected the integer constr
on l i . Differentiating with respect tol i and setting the de-
rivative to 0, yields

D2 l i5
pi

q

S (
i

pi
qDl logD

. ~29!

Here, it is worth noting that from the Kraft inequality th
Lagrange multiplierl is related asl>(logD)21. Further-

more when the equality holds, the fractionD2 l i* , which is
given by the optimal codeword lengthl i* , is expressed as
5-4
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D2 l i* 5
pi

q

(
i

pi
q

. ~30!

Thereforel i* can be written as logD((ipi
q)2q logD pi and in

the additive limit, we obtainl i* 52 logD pi . However, we
cannot always determine the optimal codeword length
this since thel i ’s must be integers. We have the followin
theorem.

Theorem 5: The average codeword length^L&q of any
prefix code for a random variableX satisfies

^L&q>Hq~X! ~31!

with equality, if and only if,pi5@12(12q) l i #
1/(12q).

Proof: From Eq.~23! the generalized KL entropy betwee
two distributionsp and r is written as

Dq~pir !5

(
i

pi
q~ lnq pi2 lnq r i !

(
i

pi
q

5

12(
i

pi
qr i

12q

~12q!(
i

pi
q

5

12(
i

pi
q

~12q!(
i

pi
q

2

(
i

pi
q~r i

12q21!

~12q!(
i

pi
q

. ~32!

If we take the information content associated with proba
ity r as the i th codeword lengthl i , i.e., 2(r i

12q21)/(1
2q)5 l i , then the average codeword length can be writ
from Eq. ~32! as

^L&q5Hq~X!1Dq~pir !. ~33!

SinceDq(pir )>0 for q.0 from Theorem 4, we have th
theorem. The equality holds if and only if,pi5r i . h

We note that the relation2(r i
12q21)/(12q)5 l i means

that the codeword lengthl i equals the information conten
different fromp, l i5I q(r ). When the equality is realized in
the above theorem, we can derive an interesting interpr
tion on the nonadditivity parameterq. The condition of the
equality states that the probability is expressed as the Ts
canonical ensemblelike factor in ani-wise manner. Then
each l i has the limit in length corresponding toq such as
l i
max51/(12q).

Since logD((ipi
q)2q logD pi obtained by the optimization

problem is not always equal to an integer, we impose
integer condition on the codewords$ l i% by rounding it up as
l i5 d logD((ipi

q)2q logD pie, wheredxe denotes the smallest in
teger >x @1#. Moreover the relationd logD((ipi

q)2q logD pie
>logD((ipi

q)2q logD pi leads to
04610
e
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i

D2 d logD(( i pi
q)2q logD pi e<(

i
D2(logD(( i pi

q)2q logD pi )

5(
i

pi
q

(
i

pi
q

51. ~34!

Hence$ l i% satisfies the Kraft inequality. Moreover, we hav
the following theorem.

Theorem 6: The average codeword length assigned bl i

5 d logD((ipi
q)2q logD pie satisfies

Hq~p!1Dq~pir !<^L&q,Hq~p!1Dq~pir !11. ~35!

Proof: The integer codeword length satisfies

logDS (
i

pi
qD 2q logD pi< l i, logDS (

i
pi

qD 2q logDpi11.

~36!

Multiplying by pi
q/( i pi

q and summing overi with Eq. ~33!
yields the theorem.h

This means that the distribution, different from the op
mal one, provokes a correction ofDq(pir ) in the average
codeword length as it does in the case of additive one.

We have discussed the properties of the nonadditive
tropy in the case of one letter so far. Next, let us consider
situation when we transmit a sequence ofn letters from the
source in such a way that each letter is to be generated i
pendently as identically distributed random variables acco
ing to p(x). Then the average codeword length per let
^Ln&q5^ l (X1 , . . . ,Xn)&q /n is bounded as we derived in th
preceding theorem,

Hq~X1 , . . . ,Xn!<^ l ~X1 , . . . ,Xn!&q,Hq~X1 , . . . ,Xn!11.
~37!

Since we are now considering independently, identically d
tributed random variablesX1 , . . . ,Xn , we obtain

(
i 51

n

@11~q21!Hq~Xi 21 , . . . ,X1!#Hq~Xi !

n

<^Ln&q,

(
i 51

n

@11~q21!Hq~Xi 21 , . . . ,X1!#Hq~Xi !

n

1
1

n
, ~38!

where we have used Theorem 3. This relation can be con
ered to be the generalized source coding theorem for
finite number of letters. We note that we obtainH(X)
<^Ln&,H(X)11/n in the additive limit since
H(X1 , . . . ,Xn)5( iH(Xi)5nH(X) holds.
5-5
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IV. GENERALIZED FANO’S INEQUALITY

Fano’s inequality is an essential ingredient to prove
converse to the channel coding theorem, which states tha
probability of error that arises over a channel is bound
away from zero when the transmission rate exceeds the c
nel capacity@19#. In the estimation of an original messag
generated from the information source, the original varia
X may be estimated asX8 on the side of a destination. There
fore, we introduce the probability of errorPe5Pr$X8ÞX%
due to the noise of the channel through which the signa
transmitted. With an error random variableE defined as

E5H 1 if X8ÞX

0 if X85X,
~39!

we have the following theorem, which is considered to be
generalized~nonadditive version! Fano’s inequality.

Theorem 7: The generalized Fano’s inequality

Hq~XuY!<Hq~Pe!1
11~q21!Hq~E,Y!

11~q21!Hq~Y!

3
Pe

q

Pe
q1~12Pe!

q

12~ uHu21!12q

~q21!~ uHu21!12q
, ~40!

whereuHu denotes the size of the alphabet of the informat
source.

Proof: The proof can be done along the line of the us
Shannon’s additive case~e.g., Ref.@1#!. Using the corollary
Eq. ~13!, we have two different expressions forHq(E,XuY),

Hq~E,XuY!5Hq~XuY!1
11~q21!Hq~X,Y!

11~q21!Hq~Y!
Hq~EuX,Y!

~41!

and

Hq~E,XuY!5Hq~EuY!1
11~q21!Hq~E,Y!

11~q21!Hq~Y!
Hq~XuE,Y!,

~42!

where we have used the corollary by regardingHq(E,XuY)
as Hq(X,EuY) in the second expression Eq.~42!. We are
now considering the following situation. That is, we wish
know the genuineX; however, we only observe a rando
variableY, which can be related to theX by the nonadditive
conditional information contentI q(yux). Hence we calculate
X8, an estimate ofX, as a function ofY such asg(Y) @1#.
Then we seeHq(EuX,Y) becomes 0 sinceE is a function of
X andY by the definition Eq.~39!. Therefore the first expres
sion of Hq(E,XuY) reduces toHq(XuY). On the other hand
from the non-negativity property ofI(E;Y) we assumed,
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and from the relationHq(E)5Hq(Pe), we can evaluate
Hq(EuY) as Hq(EuY)<Hq(E)5Hq(Pe). Moreover,
Hq(XuE,Y) can be written as

Hq~XuE,Y!5

(
E

~Pr$E%!qHq~XuY,E!

(
E

~Pr$E%!q

5
~12Pe!

qHq~XuY,0!1Pe
qHq~XuY,1!

Pe
q1~12Pe!

q
. ~43!

For E50, g(Y) givesX resulting inHq(XuY,0)50 and for
E51, we have upper bound onHq(XuY,1) by the maximum
entropy comprised of the remaining outcomesuHu21,

Hq~XuY,1!<
12~ uHu21!12q

~12q!~ uHu21!12q
. ~44!

Then it follows from Eq.~43! that

@Pe
q1~12Pe!

q#Hq~XuE,Y!<Pe
q 12~ uHu21!12q

~12q!~ uHu21!12q
. ~45!

Combining the above results with Eq.~42!, we have the
theorem.h

Remark: In the additive limit, we obtain the usual Fano
inequalityH(XuY)<H(Pe)1Pe ln(uHu21) in NAT unit.

V. CONCLUDING REMARKS

We have attempted to extend Shannon’s additive IT to
nonadditive case by using the nonadditive information c
tent Eq.~1!. In developing the nonadditive IT, this postula
of the nonadditive information content seems to plausi
selection in terms of the unification of the meaning ofaver-
age throughout the entire theory. As a consequence, the
formation entropy becomes the modified type of Tsalli
nonextensive entropy. We have shown that the propertie
the nonadditive information entropy, conditional entrop
and the joint entropy in the form of theorem, which are ne
essary elements to develop IT. These results recover
usual Shannon ones in the additive limit (q→1). Moreover,
the source coding theorem can be generalized to the no
ditive case. As we have seen in Theorem 5, the nonadditi
of the information content can be regarded as it determi
the longest codeword we can transmit to the channel.
philosophy of the present attempt can be positioned a
reverse of Jaynes’s pioneering work@20,21#. Jaynes has
brought a concept of IT to statistical mechanics in the fo
of maximizing entropy of a system~Jaynes’s maximum en
tropy principle!. The information theoretical approach to st
5-6
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tistical mechanics is now considered to be very robust
discussing some areas of physics. In turn, we have
proached IT in a nonadditive way. We believe that t
present consideration based on the nonadditive informa
content may trigger some practical future applications
such an area of the information processing.
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